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Abstract: Data from research and commercial use of lumpfish were collected from the research
facilities of Gifas (Inndyr, Northern Norway, 67.0◦ N, 14.0◦ E). The data were sourced from 12 main
lumpfish groups subdivided into 66 subgroups (N = 160,729) delivered to Gifas between 2013 and
2020 and used in cleaner-fish research in (a) land-based facilities, (b) small-scale, or (c) large-scale
sea pens. The data were standardised and organised into three main headings. Firstly, background
information included transfer time, point of origin, mean starting weight and population size on
arrival. Other information included to which site the lumpfish were transferred, volume of cage/tank,
whether in the presence of salmon or not, stocking density, days at each site and water quality
parameters. Causes of mortality were recorded, when possible, for each group, along with calculated
mortality rates, patterns, and analytical information, along with imaging where available. Results
show that causes of mortality varied within and between research sites. For lumpfish in hatcheries as
well as for those deployed at small-scale sea pens, the primary cause of mortality was identified as
pathogenic, while for lumpfish deployed at large-scale sea pens, transporting, grading and mechanical
delousing were the primary causes of mortality. The results indicate that more research is required to
clarify best practices both in commercial hatcheries and salmon cages and further understanding on
lumpfish biological requirements and stress physiology is necessary to develop better methods that
safeguard lumpfish welfare and meet their needs.

Keywords: lumpfish; salmon farming; welfare; mechanical delousing; transport; pathogenic

1. Introduction

Lumpfish (Cyclopterus lumpus) have proven to be an effective lice eater at low sea
temperatures [1–4]. However, high mortality and loss of cleaner-fish in salmon cages is
one of the most serious problems the aquaculture industry in Norway faces at present.
A study conducted by the Norwegian Food Safety Authority [5] revealed over 40% mortality
of lumpfish deployed in Atlantic salmon net-pens in Norway. Results from the survey
showed that farmers associate lumpfish mortalities with the occurrence of disease, but also
handling and mechanical procedures, such as mechanical delousing. The study also found
that lumpfish vaccination without anaesthesia is common practice, despite the lack of
scientific studies showing any benefit of avoiding the use of anaesthesia during vaccination.
This methodology can potentially contribute to events of extreme acute-stress responses
that can often trigger other secondary issues [6]. Despite the common use of vaccination,
the consensus among farmers was that existing vaccines were not effective and required
further development. Findings based on additional assessments from the lumpfish and
other cleaner-fish species used in Norwegian aquaculture are in accordance with the
findings in [5], and [7,8] depict a grim scenario on lumpfish aquaculture, from hatcheries
to Atlantic salmon farmers, where lumpfish welfare is questioned. The reports found a
lack of standardized practices, inadequate feeding, lack of dedicated personnel to follow
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up and constantly monitor health, and even lack of fundamental knowledge regarding
species-specific needs [9].

The production methods for cultivation of lumpfish have been established [10] and are
based on the technologies for rearing marine fin-fish such as sea bass and cod. Production
of lumpfish has increased rapidly, and survival from hatch to stocking is high for a marine
fin-fish species under hatchery conditions. There is the bonus that lumpfish grow quickly
and can reach stocking size of 30 g within 6 to 8 months. However, there remain production,
disease, vaccination, and quality issues. In many hatcheries, the suckers of the fish can be
deformed and do not permit attachment to a substrate. These fish are unlikely to survive for
long in sea pens, and even in the hatchery have to rest on the bottom of the tank, often on
their side. These fish may be culled at an early stage. There may be genetic or nutritional
causes for these abnormalities, but the condition needs to be fully investigated. In sum,
there are various production-related issues that can contribute to the mortality of lumpfish
in later stages and hence the need to look at underlying reasons for mortality and loss,
as done in this study.

Worsening of lumpfish’s welfare status has also been reported after transportation
and deployment on sea pens, which can pose a significant stress. Conditions such as rapid
cataract occurrence have also been demonstrated on deployed lumpfish, which is often
associated with suboptimal feeds [11] or feeding protocols [12]

Although recent reports [5,7,8] highlighted the current grim situation, it was also
pointed out that a significant part of the data were not included on the studies, as the
reported data lacked coherency and method. This emphasizes the urgent need for standard-
ization of methodology, such as in health monitoring, and the great potential for improving
welfare by adopting strategies that safeguard lumpfish welfare. Continuous health and
welfare monitoring are essential to help identify when and what procedures and operations
are detrimental and thus adapt and improve practices [13,14]. To encourage the adop-
tion of health status monitoring in a standardized, more comparable way, practical and
user-friendly approaches are necessary. Recently, operational welfare indicators for lump-
fish [15,16] have been published that can be used to define best-practice guides for better
welfare and reduced mortality. For several years, Gifas in collaboration with Akvaplan-niva
has conducted several large-scale and small-scale studies [1–4,10–12,15,17–23]. In these
experiments, the focus has been on grazing effect, but information on mortality and loss
has also been systematically gathered, which is presented in this study.

The main objective of the current study was to map the actual causes of mortality and
loss of lumpfish fish, both in the hatchery phase and in the sea phase.

2. Materials and Methods
2.1. Lumpfish Research Sites and Data Mining

Data from research and commercial use of lumpfish were collected from all Gifas
facilities where this species was utilised. The facilities were identified as (A) land-based
(MH), (B) small-scale Langholmen (LH), and commercial farm sites (Røssøy, Leirvika Nord,
and Halstenhamn (SS). Data were sourced from 12 main lumpfish groups subdivided into
66 subgroups (N = 160,729, Table 1) that were delivered to Gifas between 2013 and 2020.
The number of lumpfish transferred to each facility was N = 400 for MH (4 subgroups),
N = 1768 for LH (39 subgroups) and N = 158,564 for SS (23 subgroups).

The data were standardised and organised into three main headings. Firstly, back-
ground information included transfer time, point of origin, mean starting weight and
population size on arrival. Other information included to which site the lumpfish were
transferred, volume of cage/tank, whether in the presence of salmon or not, stocking
density, days at each site, and water quality parameters. Causes of mortality were recorded,
when possible, for each group, along with calculated mortality rates, patterns, and analyti-
cal information if available, along with imaging where available.
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Table 1. Background information on lumpfish transferred to Gifas facilities in 2013–2020 and analysed for mortality and losses in this study.

No. Transfer Transfer Start Diet Volume Water
Quality

CODE
Code

Origin
Month Year Method Weight

(g)

Number
of

Cages Hatchery Pre- Transfer Post-Transfer

Populat-
ion
(N)

Site
m3

with
Salmon

Salmon
Weight SD

Days
at

Site Temp DO

MH1 W AC
Lofoten May 2018 road 151.4 3 ? Biomar Amber Nep 90 MH 2.5 N - 68 7.3 92.5

MH1
MH2 W AC

Lofoten May 2018 road 153.8 3 Biomar Amber Nep 90 MH 2.5 N 68 7.3 92.5

MH3 W ASG Jan 2020 road 32.8 2 Otohime Skretting Skretting 110 MH 2.5 N 61 6.5 90.0
MH2 MH4 W ASG Jan 2020 road 32.3 2 Otohime Skretting Biomar 110 MH 2.5 N 61 6.5 90.0

LH1 W AC
Lofoten Jan 2015 road 22.6 2 ? ? Amber Nep. 34 LH 125 Y 538.2 10.0 159 6.4 91.2

LH2 W AC
Lofoten Jan 2015 road 77.4 2 ? ? Amber Nep. 30 LH 125 Y 516.3 10.0 159 6.4 91.2LH1

LH3 W AC
Lofoten Jan 2015 road 113.5 2 ? ? Amber Nep. 30 LH 125 Y 546.0 10.0 159 6.4 91.2

LH4 W Trond May 2013 road 42.1 2 ? ? Amber Nep. 36 LH 125 Y 298.4 12.5 75 9.7 88.7
LH5 W Trond May 2013 road 80.1 2 ? ? Amber Nep. 36 LH 125 Y 297.8 12.5 75 9.7 88.7LH2
LH6 W Trond May 2013 road 144.5 2 ? ? Amber Nep. 36 LH 125 Y 287.6 12.5 75 9.7 88.7
LH7 W Tromso May 2016 road 122.1 2 ? Amber Nep. Amber Nep. 60 LH 125 Y 653.7 10.0 62 9.1 93.5

LH3 LH8 W Tromso May 2016 road 113.2 2 ? Amber Nep. Amber Nep. 60 LH 125 Y 656.0 10.0 62 9.1 93.5

LH9 W Tromso May 2015 road 186.0 2 Artemia/
Gemma Gemma Amber Nep. 43 LH 125 Y 123.1 10.0 78 9.1 94.2

LH10 W Tromso May 2015 road 122.6 2 Artemia/
Gemma Gemma Amber Nep. 43 LH 125 Y 123.8 10.0 78 9.1 94.2

LH11 W Tromso May 2015 road 178.7 2 Artemia/
Gemma Gemma Amber Nep. 43 LH 125 Y 120.1 10.0 78 9.1 94.2

LH12 W Tromso May 2015 road 152.0 2 Artemia/
Gemma Gemma Amber Nep. 43 LH 125 Y 121.6 10.0 78 9.1 94.2

LH13 W Tromso May 2015 road 223.3 2 Artemia/
Gemma Gemma Amber Nep. 43 LH 125 Y 122.8 10.0 78 9.1 94.2

LH14 W Tromso May 2015 road 157.8 2 Artemia/
Gemma Gemma Amber Nep. 43 LH 125 Y 123.4 10.0 78 9.1 94.2

LH15 W Tromso May 2015 road 149.2 2 Artemia/
Gemma Gemma Amber Nep. 43 LH 125 Y 123.7 10.0 78 9.1 94.2

LH16 W Tromso May 2015 road 184.7 2 Artemia/
Gemma Gemma Amber Nep. 43 LH 125 Y 123.0 10.0 78 9.1 94.2

LH4

LH17 W Tromso May 2015 road 171.0 2 Artemia/
Gemma Gemma Amber Nep. 43 LH 125 Y 124.5 10.0 78 9.1 94.2

LH18 W Tromso Sept 2018 road 39.8 2 Gemma Gemma feed blocks 48 LH 125 Y 394.2 10.0 73 8.4 84.9
LH5 LH19 W Tromso Sept 2018 road 49.3 2 Gemma Gemma feed blocks 48 LH 125 Y 387.7 10.0 73 8.4 84.9
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Table 1. Cont.

No. Transfer Transfer Start Diet Volume Water
Quality

CODE
Code

Origin
Month Year Method Weight

(g)

Number
of

Cages Hatchery Pre- Transfer Post-Transfer

Populat-
ion
(N)

Site
m3

with
Salmon

Salmon
Weight SD

Days
at

Site Temp DO

LH20 W/F Tromso Oct 2019 road 55.3 2 Gemma Gemma feed blocks 48 LH 125 Y 642.4 10.0 69 7.9 89.4
LH21 W/F Tromso Oct 2019 road 39.2 2 Gemma Gemma feed blocks 48 LH 125 Y 624.6 10.0 69 7.9 89.4
LH22 W/F Tromso Oct 2019 road 56.9 2 Gemma Gemma feed blocks 48 LH 125 Y 627.7 10.0 69 7.9 89.4
LH23 W/F Tromso Oct 2019 road 69.3 2 Gemma Gemma feed blocks 48 LH 125 Y 611.3 10.0 69 7.9 89.4
LH24 W/F Tromso Oct 2019 road 56.4 2 Gemma Gemma feed blocks 48 LH 125 Y 618.2 10.0 69 7.9 89.4
LH25 W/F Tromso Oct 2019 road 44.4 2 Gemma Gemma feed blocks 48 LH 125 Y 614.6 10.0 69 7.9 89.4
LH26 W/F Tromso Oct 2019 road 67.1 2 Gemma Gemma feed blocks 48 LH 125 Y 615.9 10.0 69 7.9 89.4
LH27 W/F Tromso Oct 2019 road 55.4 2 Gemma Gemma feed blocks 48 LH 125 Y 626.3 10.0 69 7.9 89.4
LH28 W/F Tromso Oct 2019 road 56.8 2 Gemma Gemma feed blocks 48 LH 125 Y 618.6 10.0 69 7.9 89.4

LH6

LH29 W/F Tromso Oct 2019 road 46.9 2 Gemma Gemma feed blocks 48 LH 125 Y 614.3 10.0 69 7.9 89.4
LH30 W/F Tromso Jul 2020 road 35.4 2 Gemma Gemma feed blocks 48 LH 125 Y 291.3 10.0 77 12.9 89.5
LH31 W/F Tromso Jul 2020 road 40.5 2 Gemma Gemma feed blocks 48 LH 125 Y 309.4 10.0 77 12.9 89.5
LH32 W/F Tromso Jul 2020 road 39.7 2 Gemma Gemma feed blocks 48 LH 125 Y 284.4 10.0 77 12.9 89.5
LH33 W/F Tromso Jul 2020 road 47.7 2 Gemma Gemma feed blocks 48 LH 125 Y 278.4 10.0 77 12.9 89.5
LH34 W/F Tromso Jul 2020 road 38.0 2 Gemma Gemma feed blocks 48 LH 125 Y 286.1 10.0 77 12.9 89.5
LH35 W/F Tromso Jul 2020 road 42.8 2 Gemma Gemma feed blocks 48 LH 125 Y 259.6 10.0 77 12.9 89.5
LH36 W/F Tromso Jul 2020 road 48.9 2 Gemma Gemma feed blocks 48 LH 125 Y 271.6 10.0 77 12.9 89.5
LH37 W/F Tromso Jul 2020 road 47.3 2 Gemma Gemma feed blocks 48 LH 125 Y 267.6 10.0 77 12.9 89.5
LH38 W/F Tromso Jul 2020 road 40.3 2 Gemma Gemma feed blocks 48 LH 125 Y 263.6 10.0 77 12.9 89.5

LH7

LH39 W/F Tromso Jul 2020 road 39.6 2 Gemma Gemma feed blocks 48 LH 125 Y 259.6 10.0 77 12.9 89.5
SS1 W ASG Feb 2019 WB 70.1 1 ? Skretting feed blocks 14074 RØSS 140M PC Y 533.4 8.0 10 4.9 93.2
SS2 W ASG Feb 2019 WB 69.5 1 ? Skretting Skretting 13977 RØSS 140M PC Y 499.5 8.0 10 4.9 93.2
SS3 W ASG Feb 2019 WB 72.8 1 ? Skretting feed blocks 13985 RØSS 140M PC Y 556.2 8.0 10 4.9 93.2SS8

SS4 W ASG Feb 2019 WB 73.4 1 ? Skretting Skretting 11842 RØSS 140M PC Y 453.8 8.0 10 4.9 93.2
SS5 W ASG Sep 2018 WB 52.2 1 Gemma Skretting feed blocks 3800 LEIRV 90M PC Y 1966.7 8.0 181 9.1 93.7
SS6 W ASG Sep 2018 WB 55.8 1 Gemma Skretting feed blocks 3800 LEIRV 90M PC Y 1941.2 8.0 181 9.1 93.7
SS7 W ASG Sep 2018 WB 56.1 1 Gemma Skretting feed blocks 3800 LEIRV 90M PC Y 1726.5 8.0 181 9.1 93.7
SS8 W ASG Sep 2018 WB 49.5 1 Gemma Skretting feed blocks 3800 LEIRV 90M PC Y 1873.5 8.0 181 9.1 93.7
SS9 W ASG Sep 2018 WB 52.6 1 Gemma Skretting Skretting 3800 LEIRV 90M PC Y 1487.5 8.0 181 9.1 93.7
SS10 W ASG Sep 2018 WB 49.9 1 Gemma Skretting Skretting 3800 LEIRV 90M PC Y 1938.4 8.0 181 9.1 93.7
SS11 W ASG Sep 2018 WB 58.5 1 Gemma Skretting Skretting 3800 LEIRV 90M PC Y 1445.9 8.0 181 9.1 93.7
SS12 W ASG Sep 2018 WB 53.5 1 Gemma Skretting Skretting 3800 LEIRV 90M PC Y 1771.0 8.0 181 9.1 93.7
SS13 W ASG Sep 2018 WB 51.4 1 Gemma Skretting Skretting 3800 LEIRV 90M PC Y 1706.4 8.0 181 9.1 93.7
SS14 W ASG Sep 2018 WB 52.2 1 Gemma Skretting Skretting 3800 LEIRV 90M PC Y 1660.7 8.0 181 9.1 93.7
SS15 W ASG Sep 2018 WB 54.7 1 Gemma Skretting Skretting 3800 LEIRV 90M PC Y 1542.4 8.0 181 9.1 93.7
SS16 W ASG Sep 2018 WB 60.1 1 Gemma Skretting Skretting 3800 LEIRV 90M PC Y 1665.5 8.0 181 9.1 93.7

SS9

SS17 W ASG Sep 2018 WB 49.5 1 Gemma Skretting Skretting 3800 LEIRV 90M PC Y 1437.3 8.0 181 9.1 93.7
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Table 1. Cont.

No. Transfer Transfer Start Diet Volume Water
Quality

CODE
Code

Origin
Month Year Method Weight

(g)

Number
of

Cages Hatchery Pre- Transfer Post-Transfer

Populat-
ion
(N)

Site
m3

with
Salmon

Salmon
Weight SD

Days
at

Site Temp DO

SS18 W ASG Aug 2019 WB 52.5 1 Gemma Skretting feed blocks 7965 HALST 140M PC Y 808.3 8.0 272 7.4 92.8
SS19 W ASG Aug 2019 WB 50.1 1 Gemma Skretting feed blocks 10775 HALST 140M PC Y 755.5 8.0 272 7.4 92.8
SS20 W ASG Aug 2019 WB 56.8 1 Gemma Skretting feed blocks 7876 HALST 140M PC Y 268.7 8.0 272 7.4 92.8
SS21 W ASG Aug 2019 WB 52.7 1 Gemma Skretting Skretting 7766 HALST 140M PC Y 564.9 8.0 272 7.4 92.8
SS22 W ASG Aug 2019 WB 53.6 1 Gemma Skretting Skretting 7823 HALST 140M PC Y 696.9 8.0 272 7.4 92.8

SS10

SS23 W ASG Aug 2019 WB 55.7 1 Gemma Skretting Skretting 13081 HALST 140M PC Y 168.1 8.0 272 7.4 92.8
Abbreviations: Origin: W = wild; W/F = first generation domesticated; Transport: Road = transport by truck on land; WB = transport by well-boat; Site: MH = land based; LH = small
sea pens; RØSS, LEIRV, HALST = large-scale sea pens.
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2.2. Background Information

Of the 66 subgroups analysed in the study, 46 were derived from wild broodstock
and 20 were derived from farmed and wild broodstock that were part of an ongoing
breeding programme on lumpfish. All background information recorded for each group
is summarised in Table 1. Lumpfish groups were transferred from four main suppliers
between 2013 and 2020. All groups transferred to land-based and small-scale facilities were
transferred by road whilst all lumpfish transferred to Gifas commercial farm sites were
transferred by well-boat. All groups transferred to sea were stocked with Atlantic salmon.

All four groups of lumpfish were transferred to MH (land-based) during January and
February whilst for lumpfish groups transferred to LH (small-scale), three were transferred
in January and 14 and 10 groups were transferred during May and July, respectively.
Of the remaining groups, 2 were transferred during September and 10 during October.
The majority of lumpfish transferred to SS (commercial cage sites) occurred during the
month of September (13) whilst 4 and 6 groups were transferred during February and
August, respectively.

Of the four subgroups transferred to MH, mean weights ranged between 32.3 g and
153.8 g. Lumpfish subgroups transferred to LH ranged between 35.5 g and 223.3 g whilst
subgroups transferred to SS ranged between 49.5 g and 73.4 g.

The two main lumpfish groups transferred to MH remained on site for 68 and 61 days
respectively, while the seven main groups transferred to LH remained on site between
62 and 159 days. The three main groups transferred to SS were maintained on site between
63 and 272 days.

2.3. Health Assessment of Lumpfish

Assessment of the health status of 37 of the lumpfish subgroups was undertaken
during routine sampling points using the Gifas Lumpfish Health Scoring System (LHSS,
Table 2). The health scoring system focused on morphological health indicators for lumpfish.
It is divided in several categories, where each is evaluated and scored accordingly by the
user (Table 2). The assessment of health status was non-destructive, and lumpfish were
returned to their specific cage after assessment. Each category has a specific “weight” in the
final consideration of the overall health score. The specific attribution of an added “weight”
for each category was decided and adjusted after appropriate testing with historical health
data sets. The weighting criteria also consider some deteriorating conditions more severe
than others and accordingly more weighting is applied in these instances. The input of
score values in each category was calculated, giving a weighted health score for each fish.

The average group health score was calculated and an action highlighted based on the
score (Table 2). If scores were between 0 and 3, health status was deemed satisfactory, and no
action was required. A score of between 3 and 5 indicated health status had deteriorated
and action was required. A score of over 5 indicated extensive health deterioration and
immediate action required to alleviate suffering. In addition to the external condition of
the lumpfish, evidence of any continual individual loss of growth and/or mortality rates
was assessed. Condition was assessed using regression analysis for estimation of length
and weight parameters. The relationship between weight (W) and length (L) in fishes has
the form:

W = aLb

The shape parameter b was calculated using historical weight, length, width, and height
data from lumpfish (N = 3657). The results were used as part of the welfare scoring system
utilised in this study.

All lumpfish deployed at Gifas facilities are routinely assessed for health status as
mentioned above, which is based on external morphological examination. The system
allows for further assessment if lumpfish appear distressed and/or mortalities are recorded.
Fish are sampled for analysis of internal parameters that may be directly related to the
cause of death/distress. These parameters include such assessments as liver colour, ascites,
and abnormalities to internal organs, including signs of pathogenic presence. A range of
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tissue types are sampled and extensively analysed using the appropriate methods, which
include PCR, histology, bacteriology, and blood sampling.

Table 2. Lumpfish Health Scoring System (LHSS) utilized in this study.

Individual Scoring Guide

Fin
Condition Erosion/Splitting No visible

damage

Less than 25% of the
fin eroded—minor

splitting

Between 25 and 50%
of erosion More than 50% erosion
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2.4. Statistical Methods

All statistical analyses were conducted using Statistica™ 12.0 software. Possible
differences in mortality data were tested for each group with one-way analysis of variance
(ANOVA). Significant differences revealed in ANOVA were followed by Tukey’s multiple
range tests to determine differences among experimental groups. A significance level
(α) of 0.05 was used if not stated otherwise. The cumulative percentage mortality data
sets were subjected to linear regression analysis (α = 0.05). In all regressions, cumulative
mortality data were the independent variable (X-axis) and respective response criteria was
the dependent (Y) variable. Linear regression was also tested for significant deviation of
the slope from zero (p-value, <0.05).

3. Results
3.1. Causes of Mortality

There were nine known primary causes of mortality identified for all groups from the
three locations, and mortalities with no proven cause were classified as unknown (Figure 1).
The most frequent causes were handling/grading (21.2%), mechanical delousing (19.7%),
and bacterial infections (16.7%), and 19.7% had no known cause. Mortality during transfer
accounted for 6.1%, while 4.5% was linked to parasitic agents. Both viral infections and
severe cataracts accounted for 3% of groups, and 1.5% was linked to dietary effects.
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Figure 1. Percentage of primary causes of mortality identified for all lumpfish groups.

For each facility (Table 1), of the four groups transferred to MH, two (50%) had
occurrences of mortality associated with bacterial infection whilst one group (25%) had
mortalities linked to dietary effects. Of the 39 groups exhibiting mortality transferred to LH,
bacterial agents were identified as the primary cause for nine of the groups (23.1%) whilst
viral agents were responsible for mortalities in two of the groups (5.1%). Gill parasites
were the primary cause of mortality in three groups (7.7%) whilst severe incidence of
cataracts was accountable in two of the groups. Handling was identified as the primary
cause of mortality for eight of the groups whilst temperature gradients were identified
as the main causal agent for two groups. Thirteen groups (33.3%) had mortalities where
no primary agent could be identified (Table 3). Of the 23 groups of lumpfish transferred
to SS, 13 (56.5%) had mortalities where mechanical delousing was identified as the most
likely primary cause, whilst grading and splitting of Atlantic salmon was the primary cause
of mortality in six (26.1%) groups. Transporting lumpfish from the hatchery to sea cages
accounted for mortality in four groups (Table 3).

Table 3. Number and percentage of primary causes of mortality recorded at each location.

Causes
Land-Based (MH) Small-Scale (LH) Commercial (SS)

Number Percentage Number Percentage Number Percentage

Bacterial. 2 50.0 9 23.1 - -
Viral - - 2 5.1 - -

Parasite - - 3 7.7 - -
<Welfare - - - - - -
Cataract - - 2 5.1 - -

Mechanical
delousing - - - - 13 56.5

Grading/handling - - 8 20.5 6 26.1
Transporting - - - - 4 17.4

Predation - - - - - -
Temperature - - 2 5.1 - -

Dietary 1 25.0 - - - -
Unknown - - 13 33.3 - -
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There were 11 known primary and secondary causes of morality identified for all
groups from the three locations, and mortality with no proven cause was classified as
unknown (Table 4). There were no secondary causes of mortality associated with any of the
four groups transferred to MH (Table 4), while secondary causes of mortality of lumpfish
transferred to LH were associated with handling, transporting, and unknown factors
(Table 4). Secondary causes of mortalities of lumpfish transferred to SS were identified as
being associated with bacterial infections, reduced welfare, grading, predation by birds,
and unknown factors (Table 4).

Table 4. Number and percentage of primary and secondary causes of mortality recorded at each
location. Number and percentage of secondary causes are in red with parenthesis.

Causes
Land-Based (MH) Small-Scale (LH) Commercial (SS)

Number Percentage Number Percentage Number Percentage

Bacterial. 2 50.0 9 23.1 0 (4) 0 (17.4)
Viral - - 2 5.1 - -

Parasite - - 3 7.7 - -
<Welfare - - - - 0 (19) 0 (82.6)
Cataract - - 2 5.1 - -

Mechanical
delousing - - - - 13 56.5

Grading/handling - - 8 (1) 20.5 (2.6) 6 (6) 26.1 (26.1)
Transporting - - 0 (2) 0 (5.1) 4 17.4

Predation - - - - 0 (19) 0 (82.6)
Temperature - - 2 5.1 - -

Dietary 1 25.0 - - - -
Unknown - - 13 (1) 33.3 (2.6) 0 (16) 0 (69.6)

3.2. Mortality Patterns
3.2.1. Commercial Sites

The mean percentage weekly mortality of lumpfish deployed at Gifas commercial site
Røssøy can be seen in Figure 2. The mean percentage mortality (±SD) at week one for
all four polar circle cages stocked with lumpfish was calculated as 19.8% ± 4.3%. Mean
weekly mortality decreased sharply to 1.8% ± 0.6% at week two onwards until week nine,
when mean weekly mortality increased to 4.8% ± 1.7%. Mean weekly temperature slightly
increased from 4.7 ◦C in week one to 5.9 ◦C in week nine.
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The mean percentage weekly mortality of lumpfish deployed at Gifas commercial site
Leirvika can be seen in Figure 3. The mean percentage mortality (±SD) remained under 1%
for all groups during the 23-week deployment. Mean weekly mortality gradually increased
through time, with the highest mean mortality of 0.8% ± 0.1% recorded during weeks
21 and 23. Temperature decreased from a mean of 13.1 ◦C in week one to 6.2 ◦C in week 23.
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Figure 3. Percentage weekly mortality of lumpfish deployed at Gifas commercial site Leirvika.
Red line indicates mean weekly temperature at the site. Arrows indicate when mechanical delousing
was used in all cages.

The mean percentage weekly mortality of lumpfish deployed at Gifas commercial site
Hallsteinhamn can be seen in Figure 4 The mean percentage mortality (±SD) remained low
throughout for all subgroups, with weekly mean mortality rates ranging between 0 and
0.3% at week 1 and 1.2% recorded at week 15. Mean weekly temperature decreased from
8.0 ◦C in week 1 to 4.2 ◦C in week 37.
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3.2.2. Land-Based and Small-Scale Facilities

The mean percentage daily mortality of two lumpfish subgroups deployed at the
land-based facility (MH) can be seen in Figure 5. The mean percentage mortality (±SD) for
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subgroup K6 remained low throughout until day 41, when a daily percentage mortality of
4.3% was recorded. For subgroup K5, mortality rates remained low until day 34, when daily
percentage mortality of 18.6% was recorded. This increased to 35.7% at day 38. Mortality
rates fluctuated after this time point, but remained higher than subgroup K6. Mean daily
temperature fluctuated between 7.0 ◦C at day 1 to 7.4 ◦C at day 48.
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groups with the primary cause of mortality identified as transporting had the highest 
percentage cumulative mortality compared to the other groups deployed at SS, while 
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Figure 5. Percentage weekly mortality of lumpfish deployed at land-based facility (MH).

The mean percentage daily mortality of three lumpfish subgroups deployed at the
small-scale facility (LH) can be seen in Figure 6. The mean daily percentage mortality (±SD)
of the large lumpfish (444.6 g mean starting weight) remained low throughout, with the
highest rate of 2.9% occurring at day 73, while daily percentage mortality of the medium
lumpfish (80.1 g) peaked at day 62, when 10% mortality was recorded. Daily mortality
decreased to low levels after this peak; however, it remained at levels of between 3.4% and
4.0% on several occasions. Daily mortality rates of the small lumpfish (42.1 g) remained
at nil until day 56, when 2.8% was recorded. Daily mortality spiked on subsequent days,
reaching a high of 12.5% at day 75. Daily mean temperature increased from 4.5 ◦C at day
1 to 12.0 ◦C at day 73.
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3.3. Cumulative Mortality

Cumulative mortality plotted against the primary causal agent of mortality for lump-
fish groups deployed at commercial sites (SS) can be seen in Figure 7. The four groups
with the primary cause of mortality identified as transporting had the highest percentage
cumulative mortality compared to the other groups deployed at SS, while groups where
the primary cause of mortality was identified as being either grading and/or mechanical
delousing had similar cumulative mortality rates, ranging between 14.3% and 3.7%.
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4. Discussion

Results from this study identified 10 primary causes of mortality in all the lumpfish
groups deployed. Of these, handling/grading and mechanical delousing accounted for
21% and 20%, respectively, whilst bacterial infections accounted for 17% of all primary
causes. Other primary causes of mortality included viral (3%), parasitic (5%), severe
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cataract prevalence (3%), mortality during transfer to sea cages (6%), temperature gradients
(3%), and dietary (2%). While it would be reasonable to expect causes of mortality in
lumpfish populations to vary both from hatchery to hatchery but also geographically,
there are evidently many reasons for mortality. Interestingly, mortality without a specific
diagnosis accounted for 20% for the groups in the present study, but for 56% of the groups
investigated by the Norwegian Veterinary Institute in 2012-14 [24]. Given that all causes of
mortality were investigated for the primary causal agent in the present study, then perhaps
the analytical diagnostic tools employed to determine causal factors need to be more
extensively researched. Further understanding on lumpfish biological requirements and
stress physiology is necessary to develop better methods that safeguard lumpfish well-
being and meet their needs. Continuous health and welfare monitoring are essential to help
identify when and what procedures and operations are detrimental and thus adapt and
improve practices [13,14]. To encourage the adoption of health status monitorization in a
standardized, more comparable way, practical and user-friendly approaches are necessary.

Stress and handling during transfer and stocking, together with the inevitable disease
challenges in the pen environment, make the first few weeks at sea a critical time and acute
mortalities often occur [25]. Stress and damage through events such as capture, handling,
transport, or grading increase disease susceptibility and high mortality can follow these
events. Lumpfish, despite their robust appearance, are very susceptible to skin damage and
incidence is increased by their habit of adhering to substrates from which they are at times
forcefully removed. A wide range of factors influence the welfare of cleaner-fish, and it
is often the sites that put most effort into welfare that have the fewest disease problems
(P. Reynolds, pers. comm.).

Health management of cleaner-fish in salmon pens can be challenging [25]. Often,
primary factors that affect welfare and survival can facilitate secondary factors, thus further
exacerbating an already worsening situation. In addition, often more than one pathogen
is isolated from diseased fish, making it difficult to verify the primary cause of disease
and death. The cause of death may be multifactorial and influenced by poor nutritional
input and/or inadequate feeding strategies. Extreme environmental conditions may also
be a factor, and studies have shown that both low temperatures (<4◦C) [26] and high
temperatures (18 ◦C) [27] can increase mortality. High mortality can also occur after
transfer to commercial cages due to poor handling and has been linked to chemical and
mechanical delousing practices, e.g., [9,28]. Further, mortalities have been attributed to net
cleaning, bath treatments, or other operations.

All fish groups transferred to Gifas had evidence of cataracts detected either prior to or
immediately after transfer. For fish groups screened for eye health and transferred to either
small-scale facility, cataract prevalence varied between 0 and 29.2% upon transfer, and for
commercial cages, prevalence varied between 12.1% and 79.6%. There was a tendency
for prevalence to increase in all groups, with some groups approaching 90% prevalence
and the severity of cataracts increasing with time. It is known that cataracts can affect
how efficiently fish catch natural feed, such as in Arctic char (Salvelinus alpinus), where
fish with no cataracts caught zooplankton more effectively than fish with cataracts [29].
However, a previous study [12] showed that a low degree of cataracts in lumpfish did not
affect their ability to detect and consume sea lice or their overall feed intake and growth
negatively. Regardless of some fish being able to find food items and maintain growth,
the high proportion of fish in this study observed to be losing weight indicates that fish
with moderate to severe cataracts cannot maintain their growth potential and ultimately
health may be impaired. Mortality is affected by cataracts to the extent that they affect
feed intake, growth and weakened immunity and robustness of the fish [30]. The average
cataract index in the present study was generally low for most groups at the start of the
deployment period, but generally increased with time. Previous studies have recorded
a low cataract index in lumpfish [31], that there was no systematic relationship between
growth and cataract index that could indicate that cataracts had an impact on the growth
rate, or high SGR increased the risk of developing cataracts.
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Previous studies have shown that low water temperatures may be a causal factor in
reduced welfare and lower grazing performance of lumpfish (Gifas, unpublished data).
Small lumpfish may be directly challenged when transferred to an open net-pen environ-
ment in winter, when most commercial salmon farms are routinely setting out juvenile
lumpfish at an average weight of 30 g in commercial cages. Wild juvenile lumpfish spend
their early stages in the physically challenging intertidal zone, where they are reported
to grow rapidly before migrating to colder feeding grounds [32], where they may better
exploit the differences in temperature. Studies of wild larval and juvenile lumpfish growth
patterns show a rapid increase in growth rate from mid-July to August before decreasing
in August–September [33,34].

In the present study, cumulative mortality rates were similar for groups deployed at
small- and large-scale research facilities. The similarities in cumulative mortality between
both sea-based facilities indicate that the different stressors that were identified as prime
causes at each site were challenging at the same levels. For lumpfish deployed at LH,
the primary cause of mortality identified as pathogenic generally had the highest per-
centage cumulative mortality compared to the other groups deployed, while for lumpfish
deployed at large-scale research facilities, transporting, grading, and mechanical delousing
had the highest percentage cumulative mortality. Thus, different stressors were evident
dependent on site conditions, with lumpfish deployed in commercial cages more likely to
be exposed to more mechanical treatments, such as transferring, grading, splitting of cages,
and mechanical delousing, while for small-scale cages, repeated handling due to intensive
sampling regimes may be the trigger for bacterial outbreaks and a high percentage of
mortality with no identifiable cause.

5. Conclusions

Results from this study show that causes of mortality varied within and between
sites. For lumpfish in land-based facilities as well as those deployed in small-scale sea
pens, the primary cause of mortality was identified as pathogenic, while for lumpfish
deployed in large-scale sea pens, transporting, grading, and mechanical delousing were the
primary causes of mortality. The results indicate that more research is required to clarify
best practices in both commercial hatcheries and salmon cages. Continuous health and
welfare monitoring are essential to help identify when and what procedures and operations
are detrimental and thus adapt and improve practices.
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